Estimates on Neumann Eigenfunctions at the Boundary, and the “method of Particular Solutions” for Computing Them
نویسندگان
چکیده
We consider the method of particular solutions for numerically computing eigenvalues and eigenfunctions of the Laplacian on a smooth, bounded domain Ω in Rn with either Dirichlet or Neumann boundary conditions. This method constructs approximate eigenvalues E, and approximate eigenfunctions u that satisfy ∆u = Eu in Ω, but not the exact boundary condition. An inclusion bound is then an estimate on the distance of E from the actual spectrum of the Laplacian, in terms of (boundary data of) u. We prove operator norm estimates on certain operators on L(∂Ω) constructed from the boundary values of the true eigenfunctions, and show that these estimates lead to sharp inclusion bounds in the sense that their scaling with E is optimal. This is advantageous for the accurate computation of large eigenvalues. The Dirichlet case can be treated using elementary arguments and will appear in [5], while the Neumann case seems to require much more sophisticated technology. We include preliminary numerical examples for the Neumann case.
منابع مشابه
On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملAlmost Global Existence for Quasilinear Wave Equations in Waveguides with Neumann Boundary Conditions
Abstract. In this paper, we prove almost global existence of solutions to certain quasilinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides with Neumann boundary conditions. We use a Galerkin method to expand the Laplacian of the compact base in terms of its eigenfunctions. For those terms corresponding to zero modes, we obtain decay using analogs of estimates ...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کامل